博客
关于我
flink读取hive表数据的一些现象
阅读量:763 次
发布时间:2019-03-23

本文共 384 字,大约阅读时间需要 1 分钟。

一个可能的解释是,配置文件中的executionplanner设置直接影响了Flink如何处理数据。默认的execution设置为streaming,这适用于处理实时数据流,但在某些情况下,批量处理可能提供了更好的性能或数据一致性。与此同时,planner设置到batch说明Flink使用批量处理模式。

用户提到的现象显示,无论是创建Hive表还是Flink流表,由于type: streamingbatch都能正常工作,说明它们在不同的数据量和处理需求下都可以有效使用。特别是在处理外部日志文件时,批量处理能完全读取数据,而流处理则可能遇到读取逻辑上的问题。这可能是因为批处理模式更适合处理完整的、离散的数据集,而流处理则需要数据持续生成。

通过这些分析,可以得出配置文件中的execution设置直接反映了Flink处理数据的方式,从而影响了查询和处理性能。

转载地址:http://eykkk.baihongyu.com/

你可能感兴趣的文章
Netty工作笔记0075---handler链调用机制实例1
查看>>
Netty工作笔记0076---handler链调用机制实例3
查看>>
Netty工作笔记0077---handler链调用机制实例4
查看>>
Netty工作笔记0078---Netty其他常用编解码器
查看>>
Netty工作笔记0079---Log4j整合到Netty
查看>>
Netty工作笔记0080---编解码器和处理器链梳理
查看>>
Netty工作笔记0081---编解码器和处理器链梳理
查看>>
Netty工作笔记0082---TCP粘包拆包实例演示
查看>>
Netty工作笔记0083---通过自定义协议解决粘包拆包问题1
查看>>
Netty工作笔记0084---通过自定义协议解决粘包拆包问题2
查看>>
Netty工作笔记0085---TCP粘包拆包内容梳理
查看>>
Netty常用组件一
查看>>
Netty常见组件二
查看>>
Netty应用实例
查看>>
netty底层——nio知识点 ByteBuffer+Channel+Selector
查看>>
netty底层源码探究:启动流程;EventLoop中的selector、线程、任务队列;监听处理accept、read事件流程;
查看>>
Netty心跳检测
查看>>
Netty心跳检测机制
查看>>
netty既做服务端又做客户端_网易新闻客户端广告怎么做
查看>>
netty时间轮
查看>>